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COMMENT 
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Abstract. The Lanczos method is an iterative scheme which when applied to the Hamil- 
tonian H of a quantum system and starting from an initial vector (which is, in principle, 
an arbitrary vector of the associated Hilbert space) produces very good approximations 
to the eigenvalues at the extreme ends of the spectrum after a few iterations. In this 
comment we derive analytically a lower bound to the smallest eigenvalue and an upper 
bound to the largest eigenvalue of the Lanczos Hamiltonian of the system in terms of the 
expectation values of H evaluated at the initial vector. 

The calculation of the lower bounds to the eigenvalues of the time-independent 
Schrodinger equation 

HI+? = El$?, (1) 

where H is the Hamiltonian of the physical system under consideration, is not as easy 
as calculating the upper bounds. The latter can be readily and accurately obtained by 
means of the Rayleigh-Ritz variational method. However, several methods of obtaining 
the lower bounds have been derived (Bazley and Fox 1961, Hill 1980, Lowdin 1965). 

Here we present a new, entirely different method which allows us to calculate the 
lower bounds to the smallest eigenvalue and the upper bounds to the largest eigenvalue 
of the Hamiltonian H projected onto a subspace of the Hilbert space of the system. 
The bounds are given by means of the expectation values of the Hamiltonian evaluated 
at an, in principle, arbitrary vector 11) of the Hilbert space. Therefore, the bounds are 
state dependent, thus the better the choice of the vector 11) the more accurate are the 
resulting bounds. 

This problem, apart from its intrinsic interest, appears in applying the well known 
Lanczos method (Bullet et a1 1980, Haydock 1976, Lanczos 1950, Mattis 1981, Schaeffer 
1977, Whitehead et a1 1977) to solve the eigenvalue problem (1). Up to now, only 
numerical algorithms to estimate the largest eigenvalue have been developed (Parlett 
et a1 1982). 

The Lanczos (1950) method defines a computational algorithm to diagonalise the 
Hamiltonian H of a quantum mechanical system very efficiently, especially if one is 
interested in the first few lowest-lying or the last few highest-lying eigenvalues and the 
corresponding eigenvectors. This method, widely applied in numerous branches of 
physics (Bullet et a1 1980, Haydock 1976, Mattis 1981, Schaeffer 1977f, Whitehead et 

+ See especially the contribution of Roos, Haussman, Bender and Seigbahn 
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a1 1977), starts from an  initial vector 11) which is an  arbitrary vector of the Hilbert 
space of the system, generates the sequence of vectors {In); n = 1 , 2 , 3 , .  . . , N }  which 
is the so-called Lanczos' basis and converts the eigenvalue problem (1) into one of 
finding the  eigensolutions of the so-called Lanczos Hamiltonian matrix H'. 

The only non-vanishing entries of this N-dimensional real symmetric tridiagonal 
matrix are denoted by H ; . ,  = a,: H;, ,+ ,  = b,. The matrix H ' h a s  the following property: 
the characteristic polynomials { P , ( E ) ;  n = 0, 1 , .  . . , N }  of the principal submatrices 
satisfy the recursion relation 

pn ( E )  = ( E  - a n )  pn-1 ( E )  - bi-1 p n - 2 (  E )  

P- 1 ( E ) = 0, PdE) = 1, n = 1 , 2  , . . . ,  N. 

This recurrence implies that the polynomials { P , ( E ) }  form (Dehesa 1978, 1981) 
an  orthogonal set whose weight function is the spectral density w , ( E )  of the vector 
11) with respect to the Hamiltonian of the system. This function w , ( E )  gives the 
distribution of the vector 11) among the eigenstates of the system; it is usually called 
the 'local density of states' in solid state theory (Bullet et a1 1980, Haydock 1976) and  
the 'strength function' in nuclear physics (Whitehead et a1 1977, 1980). For example, 
if 11) represents a single-particle state of a nucleus, then w,( E )  gives in the nuclear 
shell model the spreading of the single-particle state among the exact shell model 
eigenstates. Often the quantity wI (  E )  can be experimentally measured and calculated 
by different analytical models. 

Therefore the problem of calculating the eigenvalues of H' reduces to finding the 
zeros of the polynomials P,( E ) .  As a trivial consequence the smallest and the largest 
eigenvalue of H' are the smallest and the largest zero of the polynomial P,v ( E ) .  Then 
we are faced with the problem of determining a lower bound to the smallest zero and 
an upper bound to the largest zero of an  orthogonal polynomial in terms of its weight 
function. Questions of this nature have received a lot of attention (Szego 1975) for 
some particular systems of orthogonal polynomials (e.g. Jacobi, Hermite, Laguerre) 
but only recently have they been attacked for a general set of orthogonal polynomial 
(Costabile and  Gautschi 1980) 

Let the weight function wl (  E )  of the polynomials { P , ( E ) }  have a finite or half-finite 
support [a, b],  a < b S 0, and  such that all its moments around the origin are finite, i.e. 

mk = jab E w, ( E ) d E = ( 1 1 H I 1) < a3 

for k = 0 ,  1 , 2 , .  . .. Also, we assume that 

E!"'< E$'"<. . . < E',"'<O 

are the zeros of P, (E) ,  where E!" ' ,  i = 1 , 2 , .  . . , n denote the energies of the bound 
states of the physical system. 

Following the lines of Costabile and Gautschi (1980) one readily finds that the 
zero E:" ' ,  which corresponds to the smallest eigenvalue of the Lanczos Hamiltonian 
of the system, is bounded from above by 

E l " ' S  T ~ ~ - ~  - h n / m 2 n - l  S r2n-2,  

Tk = mk+l/mkt k = 0 , 1 , 2 ,  . . .  

f l > l  

where 
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and 
b 

h, = P : ( E ) w l ( E )  dE. (3) 
R 

I t  has been shown (Dehesa 1978) that h, is equal to the norm of the member In + 1) 
of the Lanczos basis. Further (Dehesa 1978), 

h, = ( n  + 11 n + 1) = D,/ D,-l 

where Dk denotes the determinant 

I 

' ' I  p2k 

Here the p symbols denote the moments of w , ( E )  around the centroid m l  
( l / H I l ) =  ( H ) ,  and are related to the moments around the origin by 

On the other hand one can make a straightforward use of Costabile and Gautschi 
(1980) to obtain a lower bound to the largest eigenvalue E',"'. For simplicity let us 
assume that the support of w , ( E )  is [-a,  01, a > 0. Then it turns out that E!,"' is 
bounded from below as follows 

E!,"> hL/mi , - , -a>  T$,-?-a, n > l  

where 

(x- t  a) ,w l (x )  dx = 
1=0 

and 

~k = m i + J m i ,  k = 0 ,  1 , 2 , . .  .. 

The h' quantities are defined as in (3) but with the integration interval 
Usually the terms h,/mz,-l in (2) and hL/rnhn-l in (4) are very small with respect 

to T ~ ~ - ~  and respectively. This allows us to avoid the calculation ofthe numerically 
badly behaved D objects. Therefore we suggest using the values r2"-* and ~ ; , - ~ - a  
as the upper bound to the energy E!"' of the deepest bound level and the lower bound 
to the energy E!,"' of the least bounded level of the system (in the subspace under 
consideration) respectively. 

Summarising, we have bounded the two most extreme bound energy levels of a 
quantum system which lie in the subspace expanded by the Lanczos basis generated 
from a vector 11) of the Hilbert space. The bounds are given in a simple way by means 
of the expectation values of the Hamiltonian operator evaluated at the vector 11). 

We are very grateful to the Comision Asesora de Investigacih Cientifica y TCcnica 
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